Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Bernoulli-Formel vervollständigen (einfach)

Beispiel:

Bei einem Glücksrad ist die Wahrscheinlichkeit im grünen Bereich zu landen bei p=0,55. Gesucht ist die Wahrscheinlichkeit bei 40 Versuchen genau 33 mal im grünen Bereich zu landen.

Bestimme hierfür a, b, c, d und e so, dass man mit der folgenden Formel die gesuchte Wahrscheinlichkeit berechnen kann.

P(X = 33) = ( a b ) 0.55c de

Lösung einblenden

Man könnte die Wahrscheinlichkeit ja theoretisch auch mit einem Baumdiagramm mit 40 Ebenen lösen.

Der Binomialkoeffizient ( a b ) vorne steht dann für die Anzahl der relevanten Pfade, also der Pfade, bei denen 33 mal getroffen und 7 mal nicht getroffen wird. Davon gibt es ( n k ) , wobei n für die Anzahl aller Versuche und k für die Anzahl der Treffer steht, also muss hier a=40 und b=33 sein.

Die beiden Potenzen danach geben die Wahrscheinlichkeit eines dieser ( 40 33 ) Pfade an. Da ja in jedem Pfad 33 Treffer und 7 Nicht-Treffer vorkommen und man die Einzelwahrscheinlichkeiten miteinander multiplizieren muss, ist die Wahrscheinlichkeit eines dieser Pfade:
0.55330.457

Somit muss d = 0.45, sowie c = 33 und e = 7 sein.

Bernoulli-Formel vervollständigen

Beispiel:

Ein idealer Würfel wird 5 mal geworfen.

Für welches der aufgeführten Ereignisse könnte der Term P = ( 1 6 )5 + ( 5 a ) ( 1 6 )4 ( b 6 )c die Wahrscheinlichkeit angeben?

Bestimme für diesen Fall die fehlenden Parameter a, b und c, so dass die Formel auch tatsächlich korrekt ist.

Lösung einblenden

Es machen zwei Zufallsgrößen Sinn:
X : Anzahl der Treffer (also es wird eine 6 gewürfelt)
Y : Anzahl der Nicht-Treffer (also es wird keine 6 gewürfelt)

Beim ersten Summand ( 1 6 )5 steht ja die gegebene Wahrscheinlichkeit in der Basis und die Gesamtanzahl n=5 in der Hochzahl. Dieser Teilterm gibt also die Wahrscheinlichkeit für 5 Treffer bzw. 0 Nicht-Treffer an, also P(X=5) bzw. P(Y=0).

Beim zweiten längeren Term erkennt man die Potenz ( 1 6 )4, bei dem die gegebene Wahrscheinlichkeit in der Basis steht. Weil 4 in der Hochzahl steht, muss das also die Wahrscheinlichkeit für 4 Treffer sein, also P(X=4) bzw. P(Y=1).

X: Treffer:
0
1
2
3
4
5

Y: keine Treffer:
5
4
3
2
1
0

Zusammengefasst ergibt sich also die Wahrscheinlichkeit P(X=5)+P(X=4)=P(X≥4) bzw. P(Y≤1)

Somit ist die gesuchte Option: Mindestens 4 mal wird eine 6 gewürfelt.

Weil ja in der Basis der ersten Potenz (im hinteren Bernoulliformel-Term) die gegebene Wahrscheinlichkeit steht, muss in der Basis der zweiten Potenz die Gegenwahrscheinlichkeit stehen. Somit ist b = 5.

Die Hochzahl der ersten Potenz (im hinteren Bernoulliformel-Term) gibt die Anzahl der "Treffer" an, somit kann man bei 5 Versuchen die Anzahl der "Nicht-Treffer" mit c = 1 bestimmen.

Die Anzahl der richtigen Pfade (mit 4 Treffer und 1 Nicht-Treffer) steht vorne im Binomialkoeffizient mit ( 5 4 ) , also ist a = 4 (hier ist auch a=1 möglich).

Binomial-Aufgabe mit 2 Ereignissen

Beispiel:

Ein Basketballspieler hat eine Trefferquote von 20% und wirft 25 mal auf dem Korb. Wie groß ist die Wahrscheinlichkeit, dass er von den ersten 16 Versuchen genau 4 mal und von den restlichen Versuchen höchstens 3 mal trifft.

Lösung einblenden

Wir können die beiden Ereignisse als zwei getrennte von einander unabhängige Zufallsversuche betrachten, dabei betrachten wir zuerst die ersten 16 Durchgänge:

Die Zufallsgröße X gibt die Anzahl der Treffer des BB-Spielers an. X ist binomialverteilt mit n=16 und p=0.2.

Die gesuchte Wahrscheinlichkeit des ersten Teilereignisses berechnet man jetzt einfach als P0.216 (X=4) ≈ 0.2001.

Analog betrachten wir nun die restlichen 9 Durchgänge:

Die Zufallsgröße Y gibt die Anzahl der Treffer des BB-Spielers an. Y ist binomialverteilt mit n=9 und p=0.2.

Die gesuchte Wahrscheinlichkeit des zweiten Teilereignisses berechnet man nun als P0.29 (Y3) ≈ 0.9144.

Da die beiden Teilereignisse unabhängig voneinander sind und ja beide eintreten sollen, müssen wir nun die beiden Teilwahrscheinlichkeiten miteinander multiplizieren um die gesuchte Gesamtwahrscheinlcihkeit zu erhalten:

P = P0.216 (X=4) P0.29 (Y3) = 0.2001 ⋅ 0.9144 ≈ 0.183

zwei unabhängige Binom.

Beispiel:

Ein Biathlet hat beim Liegendschießen eine Trefferquote von 92% und im Stehen 83%. Beim Sprintwettbewerb muss er 5 mal liegend und 5 mal im Stehen schießen. Wie hoch ist die Wahrscheinlichkeit, dass er dabei mindestens 9 mal trifft?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst überlegen wir mit welchen Kombinationen man auf die Summe von mindestens 9 kommen kann:

  • 4 mal Liegendschießen und 5 mal Stehendschießen
  • 5 mal Liegendschießen und 4 mal Stehendschießen
  • 5 mal Liegendschießen und 5 mal Stehendschießen

4 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 4 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.

P0.925 (X=4) = ( 5 4 ) 0.924 0.081 ≈ 0.2866
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.83.

P0.835 (X=5) = ( 5 5 ) 0.835 0.170 ≈ 0.3939
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p1=0.2866 ⋅ 0.3939 = 0.11289174

5 mal Liegendschießen und 4 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.

P0.925 (X=5) = ( 5 5 ) 0.925 0.080 ≈ 0.6591
Die Wahrscheinlichkeit für 4 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.83.

P0.835 (X=4) = ( 5 4 ) 0.834 0.171 ≈ 0.4034
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p2=0.6591 ⋅ 0.4034 = 0.26588094

5 mal Liegendschießen und 5 mal Stehendschießen

Die Wahrscheinlichkeit für 5 mal Liegendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.92.

P0.925 (X=5) = ( 5 5 ) 0.925 0.080 ≈ 0.6591
Die Wahrscheinlichkeit für 5 mal Stehendschießen ist

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=5 und p=0.83.

P0.835 (X=5) = ( 5 5 ) 0.835 0.170 ≈ 0.3939
Da die beiden Ereignisse unabhängig voneinander sind, darf man die Wahrscheinlichkeiten multilplizieren, um die Wahrscheinlichkeit, dass beides eintritt, zu erhalten.
p3=0.6591 ⋅ 0.3939 = 0.25961949


Die gesuchte Wahrscheinlichkeit erhält man nun, indem man die Wahrscheinlichkeiten der 3 Kombinationen addiert:

0.1129 + 0.2659 + 0.2596 = 0.6384

feste Reihenfolge im Binomialkontext

Beispiel:

Ein Basketballspieler mit einer Trefferquote von 70% wirft 7 mal auf den Korb. Bestimme die Wahrscheinlichkeit, dass er bei diesen 7 Versuchen irgendwann einmal eine Serie mit 3 aufeinanderfolgenden Treffern hinlegt und bei allen anderen Versuchen nicht trifft.

Lösung einblenden

Wenn die Reihenfolge keine Rolle spielen würde, könnten wir ja einfach die Wahrscheinlichkeit von 3 Treffer bei 7 Versuchen mit der Formel von Bernoulli berechnen: ( 7 3 ) 0.7 3 0.3 4

Dabei gibt ja 0.7 3 0.3 4 die Wahrscheinlichkeit eines bestimmten Pfads mit 3 Treffer und 4 Nicht-Treffern und ( 7 3 ) die Anzahl solcher Pfade an.

Hier spielt nun aber die Reihenfolge eine Rolle, also haben wir nicht alle möglichen ( 7 3 ) Anordnungen der Treffer sondern nur die ausgewählten (bei denen die Treffer benachbart sind), das sind im Einzelnen:

XXXOOOO

OXXXOOO

OOXXXOO

OOOXXXO

OOOOXXX

Es gibt also genau 5 verschiedene mögliche Reihenfolgen für diese benachbarten Treffer, somit gilt für die Gesamtwahrscheinlichkeit:
P = 5 ⋅ 0.7 3 0.3 4 ≈ 0.0139

Kombination Binom.-Baumdiagramm

Beispiel:

Bei einer Fluggesellschaft treten 13% der Besitzer gültiger Flugtickets ihren Flug nicht an. Deswegen verkauft die Fluggesellschaft immer 105 Tickets für ihr Flugzeug mit 93 Plätzen. Wie groß ist die Wahrscheinlichkeit, dass es bei drei aufeinanderfolgenden Flügen nicht öfters als einmal zu der peinlichen Situation kommt, dass mehr Fluggäste ihren Flug antreten wollen, als Plätze frei sind?
(Bitte auf 4 Stellen nach dem Komma runden)

Lösung einblenden

Zuerst berechnen wir mit Hilfe der Binomialverteilungsfunktionen die Einzelwahrscheinlichkeiten für 'nicht überbucht'.

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und unbekanntem Parameter p.

Gesucht ist die Wahrscheinlichkeit für höchstens 93 Treffer bei 105 Versuchen mit einer Einzelwahrscheinlichkeiten von 0.87, also P0.87105 (X93)

Dazu kann man ja einfach die kumulierte Binomialverteilungsfunktion benutzen:

Die Zufallsgröße X gibt die Anzahl der Treffer an. X ist binomialverteilt mit n=105 und p=0.87.

P0.87105 (X93) = P0.87105 (X=0) + P0.87105 (X=1) + P0.87105 (X=2) +... + P0.87105 (X=93) = 0.72617460012613 ≈ 0.7262
(TI-Befehl: binomcdf(105,0.87,93))

Damit kennen wir nun die Einzelwahrscheinlichkeiten von 'nicht überbucht' (p=0.7262) und 'überbucht'(p=0.2738).

Jetzt können wir mit einem Baumdiagramm die Gesuchte Endwahrscheinlichkeit berechnen.

Gesucht ist ja 0 mal 'überbucht' oder 1 mal 'überbucht'

EreignisP
nicht überbucht -> nicht überbucht -> nicht überbucht0,383
nicht überbucht -> nicht überbucht -> überbucht0,1444
nicht überbucht -> überbucht -> nicht überbucht0,1444
nicht überbucht -> überbucht -> überbucht0,0544
überbucht -> nicht überbucht -> nicht überbucht0,1444
überbucht -> nicht überbucht -> überbucht0,0544
überbucht -> überbucht -> nicht überbucht0,0544
überbucht -> überbucht -> überbucht0,0205

Einzel-Wahrscheinlichkeiten: nicht überbucht: 0,7262; überbucht: 0,2738;

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das SchaubBild nicht sehen :( Die relevanten Pfade sind:
  • 'nicht überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,383)
  • 'nicht überbucht'-'nicht überbucht'-'überbucht' (P=0,1444)
  • 'nicht überbucht'-'überbucht'-'nicht überbucht' (P=0,1444)
  • 'überbucht'-'nicht überbucht'-'nicht überbucht' (P=0,1444)

Die Lösung ist also die Summe dieser Wahrscheinlichkeiten:

0,383 + 0,1444 + 0,1444 + 0,1444 = 0,8162