Aufgabenbeispiele von Bogenmaß

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Winkel im Bogenmaß angeben

Beispiel:

Gib den Winkel α = 330° im Bogenmaß x an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

330° sind aber nur ein 330° 360° Kreis, also ist die gesuchte Bogenlänge x zu 330° auch nur 330° 360° ⋅ 2π = 330 180 ⋅ π.

Jetzt müssen wir nur noch kürzen:

x = 330° 180° ⋅π = 11 6 ⋅π

vom Bogenmaß ins Gradmaß

Beispiel:

Gib den Winkel x = 1π im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π dem Gradmaß 180°.

1π entspricht also dem Gradmaß 1⋅180° = 180°

vom Bogenmaß ins Gradmaß (WTR)

Beispiel:

Gib den Winkel x = 1.9 im Gradnmaß α an.

Lösung einblenden

Die Bogenlänge eines vollen Einheitskreises beträgt 2π⋅r, also 2π⋅1 = 2π und entschpricht somit 360°.

Somit entspricht die Bogenlänge π ≈ 3,14 dem Gradmaß 180°.

1.9 = 1.9 π ⋅π entspricht also dem Gradmaß 1.9 π ⋅180° ≈ 108.9°

sin, cos Einheitskreis (Bogenmaß)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Bestimme näherungsweise cos( π ).

Auf dem Einheitskreis rechts kann man mit der Maus (Finger) Winkel einzeichen

Lösung einblenden

π bedeutet 1 2 eines Kreises, also 1 2 von 360° = 180°.

Am Einheitskreis kann man den Wert für cos( π ) bzw. für cos(180°) ablesen:

cos π ) bzw. cos(180°) ist der x-Wert des Schnittpunktes der roten Geraden mit dem (blauen) Einheitskreis, also die Länge der orangen Strecke.
Am besten ablesen kann man diesen Wert, wenn man die (grüne) senkrechte Linie zur x-Aches verfolgt:

cos( π °) ≈ -1

gleiche sin- oder cos-Werte (Bogenmaß)

Beispiel:

Gib die beiden Winkel zwischen 0 und 2π an, die den gleichen Kosinuswert haben wie x = - 1 12 π.

Lösung einblenden
canvas

Zuerst suchen wir den Winkel zwischem 0 und 2π, der im Einheitskreis an der selben Stelle steht wie - 1 12 π. Dazu addieren wir einfach 2π (= 24 12 π) zum gegebenen Winkel: - 1 12 π + 24 12 π = 23 12 π.

Somit gilt x1 = 23 12 π.

Die andere Stelle muss nun an einer anderen Stelle im Einheitskreis liegen.

Wie beim Gradmaß erkennt man auch hier, dass die beiden Winkel mit gleichen Kosinuns-Werten symmetrisch bezüglich der x-Achse liegen, so dass man also x2 einfach als x2 = - x1 berechnen kann.

Weil ja aber auch der zweite Winkel zwischen 0 und 2π liegen muss, nehmen wir statt - 23 12 π einfach - 23 12 π + 2 π = 1 12 π für x2.

Somit gilt: x1 = 23 12 π und x2 = 1 12 π und

Theoreitsch kann man aber auch den Umweg über das Gradmaß gehen.
Dazu rechnet man dann zuerst mal den Winkel - 1 12 π als - 1 12 ⋅ 180° = -15° ins Gradmaß um und addieren 360° um den Winkel zwischem 0° und 360° zu bekommen. Es gilt also = 345°.

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Man erkennt am Schaubild rechts, dass die beiden Winkel mit dem gleichen Kosinuswert (oranger waagrechter Strich) symmetrisch zur x-Achse liegen.

Wenn man also den (braunen) Ausgangswinkel 345° an der x-Achse spiegelt, erhält man doch einfach den negativen Winkel -345°, also eben in die falsche Richtung gedreht: mit dem Uhrzeiger und unten rum.

Da wir ja aber einen positiven Winkel suchen, müssen wir eben wieder eine volle Umdrehung draufaddieren:

β = -345° + 360° = 15°

Wenn man nun α und β wieder ins Bogenmaß umrechnet, erhält man die beiden Lösungen: x1 = 23 12 π und x2 = 1 12 π

einfache trigonometrische Gleichungen

Beispiel:

Bestimme alle Lösungen innerhalb einer Periode [0;2π).
sin( x ) = 0,35

Lösung einblenden
canvas
sin( x ) = 0,35 |sin-1(⋅)

Der WTR liefert nun als Wert 0.35757110364551

1. Fall:

x1 = 0,358

Am Einheitskreis erkennen wir, dass die Gleichung sin( x ) = 0,35 noch eine weitere Lösung hat. (die waagrechte grüne Gerade y=0.35 schneidet den Einheitskreis in einem zweiten Punkt).

Am Einheitskreis erkennen wir auch, dass die andere Lösung an der y-Achse gespiegelt liegt, also π - 0,358 = 2,784 liegen muss.

2. Fall:

x2 = 2,784

L={ 0,358 ; 2,784 }