Aufgabenbeispiele von MGK Klasse 9

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


einfache Modulo Aufgabe

Beispiel:

Bestimme (die kleinste natürliche Zahl für die gilt:) 27 mod 10.

Lösung einblenden

Das nächst kleinere Vielfache von 10 ist 20, weil ja 2 ⋅ 10 = 20 ist.

Also bleibt als Rest eben noch 27 - 20 = 7.

Somit gilt: 27 mod 10 ≡ 7.

Modulo in einem Intervall

Beispiel:

Bestimme eine Zahl n zwischen 60 und 69 für die gilt n ≡ 73 mod 8.

Lösung einblenden

Das nächst kleinere Vielfache von 8 ist 72, weil ja 9 ⋅ 8 = 72 ist.

Also bleibt als Rest eben noch 73 - 72 = 1.

Somit gilt: 73 mod 8 ≡ 1.

Wir suchen also eine Zahl zwischen 60 und 69 für die gilt: n ≡ 1 mod 8.

Dazu suchen wir erstmal ein Vielfaches von 8 in der Nähe von 60, z.B. 64 = 8 ⋅ 8

Jetzt muss die gesuchte Zahl ja aber nicht ≡ 0 mod 8 , sondern ≡ 1 mod 8 sein, also addieren wir noch 1 auf die 64 und erhalten so 65.

Somit gilt: 65 ≡ 73 ≡ 1 mod 8.

Modulo addieren

Beispiel:

Berechne ohne WTR: (2394 - 29998) mod 6.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(2394 - 29998) mod 6 ≡ (2394 mod 6 - 29998 mod 6) mod 6.

2394 mod 6 ≡ 0 mod 6 kann man relativ leicht bestimmen, weil ja 2394 = 2400-6 = 6 ⋅ 400 -6 = 6 ⋅ 400 - 6 + 0.

29998 mod 6 ≡ 4 mod 6 kann man relativ leicht bestimmen, weil ja 29998 = 30000-2 = 6 ⋅ 5000 -2 = 6 ⋅ 5000 - 6 + 4.

Somit gilt:

(2394 - 29998) mod 6 ≡ (0 - 4) mod 6 ≡ -4 mod 6 ≡ 2 mod 6.

Modulo multiplizieren

Beispiel:

Berechne ohne WTR: (91 ⋅ 16) mod 4.

Lösung einblenden

Um längere Rechnungen zu vermeiden, rechnen wir:

(91 ⋅ 16) mod 4 ≡ (91 mod 4 ⋅ 16 mod 4) mod 4.

91 mod 4 ≡ 3 mod 4 kann man relativ leicht bestimmen, weil ja 91 = 88 + 3 = 22 ⋅ 4 + 3 ist.

16 mod 4 ≡ 0 mod 4 kann man relativ leicht bestimmen, weil ja 16 = 16 + 0 = 4 ⋅ 4 + 0 ist.

Somit gilt:

(91 ⋅ 16) mod 4 ≡ (3 ⋅ 0) mod 4 ≡ 0 mod 4.

gemeinsame Modulos finden

Beispiel:

Finde alle natürlichen Zahlen m ≥ 2, für die gilt :
45 mod m = 60 mod m.

Lösung einblenden

1. (etwas umständliche) Möglichkeit:

Wir probieren einfach alle natürliche Zahlen m<= 45 aus, ob zufällig 45 mod m = 60 mod m gilt:

m=2: 45 mod 2 = 1 ≠ 0 = 60 mod 2

m=3: 45 mod 3 = 0 = 0 = 60 mod 3

m=4: 45 mod 4 = 1 ≠ 0 = 60 mod 4

m=5: 45 mod 5 = 0 = 0 = 60 mod 5

m=6: 45 mod 6 = 3 ≠ 0 = 60 mod 6

m=7: 45 mod 7 = 3 ≠ 4 = 60 mod 7

m=8: 45 mod 8 = 5 ≠ 4 = 60 mod 8

m=9: 45 mod 9 = 0 ≠ 6 = 60 mod 9

m=10: 45 mod 10 = 5 ≠ 0 = 60 mod 10

m=11: 45 mod 11 = 1 ≠ 5 = 60 mod 11

m=12: 45 mod 12 = 9 ≠ 0 = 60 mod 12

m=13: 45 mod 13 = 6 ≠ 8 = 60 mod 13

m=14: 45 mod 14 = 3 ≠ 4 = 60 mod 14

m=15: 45 mod 15 = 0 = 0 = 60 mod 15

m=16: 45 mod 16 = 13 ≠ 12 = 60 mod 16

m=17: 45 mod 17 = 11 ≠ 9 = 60 mod 17

m=18: 45 mod 18 = 9 ≠ 6 = 60 mod 18

m=19: 45 mod 19 = 7 ≠ 3 = 60 mod 19

m=20: 45 mod 20 = 5 ≠ 0 = 60 mod 20

m=21: 45 mod 21 = 3 ≠ 18 = 60 mod 21

m=22: 45 mod 22 = 1 ≠ 16 = 60 mod 22

m=23: 45 mod 23 = 22 ≠ 14 = 60 mod 23

m=24: 45 mod 24 = 21 ≠ 12 = 60 mod 24

m=25: 45 mod 25 = 20 ≠ 10 = 60 mod 25

m=26: 45 mod 26 = 19 ≠ 8 = 60 mod 26

m=27: 45 mod 27 = 18 ≠ 6 = 60 mod 27

m=28: 45 mod 28 = 17 ≠ 4 = 60 mod 28

m=29: 45 mod 29 = 16 ≠ 2 = 60 mod 29

m=30: 45 mod 30 = 15 ≠ 0 = 60 mod 30

m=31: 45 mod 31 = 14 ≠ 29 = 60 mod 31

m=32: 45 mod 32 = 13 ≠ 28 = 60 mod 32

m=33: 45 mod 33 = 12 ≠ 27 = 60 mod 33

m=34: 45 mod 34 = 11 ≠ 26 = 60 mod 34

m=35: 45 mod 35 = 10 ≠ 25 = 60 mod 35

m=36: 45 mod 36 = 9 ≠ 24 = 60 mod 36

m=37: 45 mod 37 = 8 ≠ 23 = 60 mod 37

m=38: 45 mod 38 = 7 ≠ 22 = 60 mod 38

m=39: 45 mod 39 = 6 ≠ 21 = 60 mod 39

m=40: 45 mod 40 = 5 ≠ 20 = 60 mod 40

m=41: 45 mod 41 = 4 ≠ 19 = 60 mod 41

m=42: 45 mod 42 = 3 ≠ 18 = 60 mod 42

m=43: 45 mod 43 = 2 ≠ 17 = 60 mod 43

m=44: 45 mod 44 = 1 ≠ 16 = 60 mod 44

m=45: 45 mod 45 = 0 ≠ 15 = 60 mod 45

2. (deutlich schnellere) Möglichkeit:

Wir erinnern uns daran, dass
a mod m ≡ b mod m
wenn m ein Teiler von (a-b) bzw. (b-a) ist.

Somit müssen wir nur die Teiler von (60 - 45) = 15 bestimmen:

die gesuchten Zahlen sind somit:

3; 5; 15