Aufgabenbeispiele von Anwendungen

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Sinus und Thaleskreis (leicht)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig.

Der blaue Halbkreis hat einen Durchmesser von u = 6 cm.

Die Länge der gemeinsamen Kante der beiden Dreiecke beträgt v = 5.2 cm.

Bestimme die fehlende Winkelweite α.

Lösung einblenden

Am blauen Thaleskreis erkennt man sofort, dass γ ein rechter Winkel sein muss.

Nach der Definition des Sinus gilt im rechtwinkligen Dreieck sin(β)= Gegenkathete Hypotenuse

Damit folgt sin(β)= 5.2cm 6cm =0.867 und somit β=60.1°

Wegen der Winkelsumme im Dreieck muss gelten: 90° + β + φ = 180°.
Somit gilt φ = 90° - β° = 29.9°.

Wegen der Gleichschenkligkeit des großen Dreiecks muss nun aber β und (α+φ) gleich groß sein.

Mit α+29.9°=β=60.1° gilt nun: α = 30.1°

Sinus und Thaleskreis (schwer)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Das große Dreieck ist gleichschenklig. Bestimme die Länge der Strecke PQ.

Lösung einblenden

Am blauen Thaleskreis über dem ersten Dreieck erkennt man sofort, dass γ ein rechter Winkel sein muss.

Als Nebenwinkel von γ muss natürluch auch δ ein recher Winkel sein.

Aufgrund der Winkelsumme im zweiten Dreieck folgt δ + ε + 36° = 180°.

Daraus folgt ε = 180° - 90° - 36° = 54°.

Mit Hilfe der Gleichschenkligkeit des großen Dreiecks kann mann nun β bestimmen: Es gilt ε + 2⋅β = 180°. Daraus folgt β = 180° - ε 2 = 126° 2 = 63°

Mit Hilfe des Sinus kann man nun die Länge der gemeinsamen Seite g der beiden Dreiecke berechnen:

Da g die Gegenkathete von β ist, gilt: sin(β)=sin(63°) = g 5cm

Damit folgt g = sin(63°) ⋅ 5cm ≈ 4.5cm

Nun können wir im zweiten Dreieck den Sinus anwenden und so die gesuchte Seite PQ herausfinden: sin(ε)= g PQ

Setzt man die bekannten Werte ein, so folgt sin(54°)= 4.5 PQ

Damit folgt: PQ = 4.5 sin(54°) = 5.6cm

Trigonometrie Anwendungen

Beispiel:

Von einem Fenster in 13m Höhe kann man den entfernten Rand eines Kanals unter dem Winkel α=60° gegenüber der Senkrechten betrachten. Der vordere Rand des Kanals erscheinet unter dem Winkel β=40° gegenüber der Senkrechten. Wie breit ist der Kanal?

Lösung einblenden

In beiden Dreiecken gilt für den Tangens: tan(α)= Gegenkathete Ankathete .
Da nach der Gegenkathete gesucht wird, stellen wir um zu
Gegenkathete g1=Ankathete ⋅ tan(α)=13 ⋅ tan(60°) ≈22.5167

Genau gleich verfahren wir mit dem anderen Dreieck:
Gegenkathete g2=Ankathete ⋅ tan(β)=13 ⋅ tan(40°) ≈10.9083

Die gesuchte Strecke ist nun gerade die Differenz der beiden Gegenkatheten:
s=22.517 - 10.908 ≈ 11.608 m.

Winkel zw. Punkten im Koordinatensystem

Beispiel:

Berechne alle Längen und Winkel im Dreick ABC mit A(-5|-1), B(3|5) und C(-5|5).

Runde die Ergebnisse auf eine Nachkommastelle.

Lösung einblenden
Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Wenn man die drei Punkte in ein Koordinatensystem einträgt erkennt man sofort, dass (zwischen B und C) a = 8 und (zwischen A und C) b = 6 sein müssen. Weil das Dreieck rechtwinklig ist, kann man c (zwischen A und B), also die Hypotenuse, mit dem Satz des Pythagoras berechnen:

Dreiecks mit Hilfe des Satzes des Pythagoras berechnen.

c2 = 82 + 62

c2 = 64 + 36

c2 = 100

c = 100 10

Da a (zwischen B und C) und b (zwischen A und C) parallel zu den Koordinatenachsen sind, muss der Winkel in C γ = 90° sein.

Den Winkel α können wir mit dem Tangens berechnen:

tan(α) = Gegenkathete Ankathete = 8 6 ≈ 1.333

Daraus folgt: α = arctan(1.333) ≈ 53.1°.

Wegen der Winkelsumme von 180° im Dreieck folgt: β = 90°-53.1° = 36.9°