Aufgabenbeispiele von am Schaubild ohne Stammfkt.

Durch Aktualisieren des Browsers (z.B. mit Taste F5) kann man neue Beispielaufgaben sehen


Hoch- und Tiefpkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f '. Bestimme jeweils Typ und den x-Wert aller Extrempunkte des Graphen von f im abgebildeten Bereich.

Lösung einblenden

Da Extrempunkte immer eine waagrechte Tangente haben, gilt die notwendige Bedingung f '= 0, wir suchen also die Nullstellen der Ableitungsfunktion f '.

Um beurteilen zu können, ob es sich um einen Hochpunkt des Graphen von f, um eine Tiefpunkt oder keines von beidem (Sattelpunkt) handelt, kann man jeweils den Vorzeichenwechsel (VZW) der Funktion f ' anschauen (hinreichende Bedingung).

Wir untersuchen also alle Nullstellen der abgebildeten Ableitungsfunktion f '.

Da der Graph von f ' bei x = -4 die x-Achse berührt und f ' somit keinen VZW aufweist, kann der Graph der Originalfunktion f bei x = -4 auch keinen Extrempunkt haben (Er hat dort einen Sattelpunkt).

Wir erkennen bei x = -2 einen VZW in der Funktion f ' von + nach -. Also muss der Graph der Originalfunktion f bei x = -2 einen Hochpunkt haben.

Wir erkennen bei x = 1 einen VZW in der Funktion f ' von - nach +. Also muss der Graph der Originalfunktion f bei x = 1 einen Tiefpunkt haben.

Wendepunkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme alle Wendestellen von f im abgebildeten Bereich.
(die gesuchten x-Werte sind alle ganzzahlig)

Lösung einblenden

Da Wendestellen immer Extremstellen der Ableitung sind, müssen wir in der Abbildung nur nach den Extremstellen von f ' suchen.

Diese erkennen wir leicht bei x = 2.

Monotonie (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gezeichnet ist der Graph von f '. Bestimme möglichst große Intervalle, auf denen f monoton steigend, bzw. monoton fallend ist .

Lösung einblenden

Nach dem Monotoniesatz genügt es die Intervalle zu finden, in denen die Ableitungsfunktion f ', positiv bzw. negativ ist.

Wir erkennen: Im Intervall [-6;-1] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Wir erkennen: Im Intervall [-1;3] gilt: f '(x) ≤ 0, also ist f monoton fallend.

Wir erkennen: Im Intervall [3;6] gilt: f '(x) ≥ 0, also ist f monoton steigend.

Extrempunkte der Ableitung

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f'. Bestimme jeweils Typ und den x-Wert der Extrempunkte von f'' im abgebildeten Bereich.
(Die Lösungen sind ganzzahlig)

Lösung einblenden

Man erkennt am Graph von f', dass bei x = 1 eine maximale Steigung (m ≈ 2) ist. Dort hat also f'', die Ableitungsfunktion von f', einen Hochpunkt.

Minimaler Grad bestimmen

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(

Gegeben ist eine ganzrationale Funktion f.

Gezeichnet ist der Graph von f ''.

Wie groß muss der Grad von f mindestens sein?

Lösung einblenden

Man erkennt am Graph von f '' 3 Extrempunkte, also muss f ''' ( - die Ableitung von f '' - ) mindestens 3 Nullstellen und somit auch mindestens Grad 3 haben.

Weil bei ganzrationalen Funktionen mit jedem Ableiten der Grad um 1 verringert wird, muss der Grad der Originalfunktion f um 3 höher, also f vom Grad 6 sein.

Pkt mit paralleler Tangente (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f ', also der Ableitungsfunktion einer Funktion f.
Bestimme eine Stelle x, an der die Tangente an den Graph von f parallel zur Geraden g: y= -x verläuft.

Lösung einblenden

Die Steigung der Tangente an den Graph von f, kurz die Tangentensteigung von f, ist f ', die Ableitung von f.

Da die Gerade g die Steigung -1 hat, muss die parallele Tangente auch die Steigung m = -1 haben. Es muss also f '(x) = -1 gelten.

Am Schaubild kann man f '(0) = -1 ablesen.

Die gesuchte Stelle ist also x = 0.

Summe f(x) und f'(x) (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(2) + f '(2).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der Tangente eingezeichneten Tangente f '(2) = 2 entnehmen.

Außerdem können wir natürlich f(2) = 1 am Schaubild ablesen:

Also gilt: f(2) + f '(2) = 1 + 2 = 3.

Verkettung vorwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme h(0).

Lösung einblenden

Wir können der Zeichnung rechts f(0) = -1 entnehmen.

Also gilt h(0) = g(f(0)) = g(-1)

g(-1) können wir auch wieder am (blauen) Graph ablesen:
h(0) = g(f(0)) = g(-1) = 2.

Verkettung rückwärts

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=g(f(x)).
Bestimme ein x, so dass h(x) = -1 gilt.

Lösung einblenden

Wenn wir auf der y-Achse bei y = -1 waagrecht zur blauen Geraden von g gehen, erkennen wir den Punkt P mit P(-3|-1), der auf dem Graph von g liegt, also gilt:
-1 = g(-3)
Wegen -1 = h(x)= g(f(x))= g(-3) gilt also f(x) = -3.

Wir müssen nun also nur noch nach einem der beiden Punkte auf dem (roten) Graph von f suchen, deren y-Werte =-3 sind.

Diese erkennen wir bei Q1(-2|-3) und Q2(0|-3), also bei
x1 = -2 und x2 = 0

Verkettung von f und f' (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f (rote Kurve).
Bestimme f(f '(-1)).

Lösung einblenden

Wir können der Zeichnung rechts mit Hilfe der eingezeichneten Tangente f '(-1) = -2 entnehmen.

Wir suchen also f(f '(-1)) = f(-2).

f(-2) können wir aber auch wieder einfach am Schaubild ablesen
(an der y-Koordinate des roten Punkts):

f(f '(-1)) = f(-2) = 2 .

Produktregel am Schaubild

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet sind die Graphen von f (rote Kurve) und g (blaue Gerade).
Die Funktion h ist gegeben durch h(x)=f(x)⋅g(x).
Bestimme h(-3) und h'(-3).

Lösung einblenden

Wir können der Zeichnung rechts f(-3) = 3 und g(-3) = 3 entnehmen.

Also gilt h(-3)= f(-3)⋅g(-3) = 33 = 9

Für die Ableitung h'(x) gilt nach der Produktregel h'(x) = f'(x)⋅g(x) + f(x)⋅g'(x)

Also h'(-3) = f'(-3)⋅g(-3) + f(-3)⋅g'(-3)

Da ja g (in blau gezeichnet) die Tangente an f in x=-3 ist, können wir am Graph von g sowohl f'(-3) als auch g'(-3) als Steigung m=-2 der Geraden ablesen, also gilt f'(-3) = g'(-3) = -2.

Somit gilt:
h'(-3) = f'(-3)⋅g(-3) + f(-3)⋅g'(-3)
= -23 + 3 ( -2 )
= -12.

Hoch- und Tiefpkte in f (ohne F)

Beispiel:

Du hast entweder einen veralteten Browser oder Javascript ausgeschaltet. Deswegen kannst du leider das Schaubild nicht sehen :(
Gezeichnet ist der Graph von f '. Bestimme jeweils Typ und den x-Wert aller Extrempunkte des Graphen von f im abgebildeten Bereich.

Lösung einblenden

Da Extrempunkte immer eine waagrechte Tangente haben, gilt die notwendige Bedingung f '= 0, wir suchen also die Nullstellen der Ableitungsfunktion f '.

Um beurteilen zu können, ob es sich um einen Hochpunkt des Graphen von f, um eine Tiefpunkt oder keines von beidem (Sattelpunkt) handelt, kann man jeweils den Vorzeichenwechsel (VZW) der Funktion f ' anschauen (hinreichende Bedingung).

Wir untersuchen also alle Nullstellen der abgebildeten Ableitungsfunktion f '.

Da der Graph von f ' bei x = -4 die x-Achse berührt und f ' somit keinen VZW aufweist, kann der Graph der Originalfunktion f bei x = -4 auch keinen Extrempunkt haben (Er hat dort einen Sattelpunkt).

Da der Graph von f ' bei x = -1 die x-Achse berührt und f ' somit keinen VZW aufweist, kann der Graph der Originalfunktion f bei x = -1 auch keinen Extrempunkt haben (Er hat dort einen Sattelpunkt).